
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Positive and Negative Regular Expression Filter in

Prevention of SQL Injection Attacks

Ryandito Diandaru 13519157

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail : 13519157@std.stei.itb.ac.id

Abstract—SQL Injection is a type of attack on websites that

uses SQL databases. SQL injection attacks happen when the

attacker manages to execute a command to the victim database,

resulting in data breach or even on extreme cases, loss of data.

Prevention procedures regarding SQL Injections are already built,

and two of them are the technique of user input validation and data

sanitization. Regular Expression is then used to implement both of

these techniques, resulting in two categories which are positive

filter, a regular expression made to only accept kind strings like

that of the target database and negative filter which accept

everything but some specified illegal character or string. Positive

filters are stricter, therefore generally more secure. Whereas

negative filters are more open to change and less prone to syntax

errors.

Keywords—SQL; injection; regular; expression; filter;

sanitization

I. INTRODUCTION

In this modern world of computing and internet technology,
us humans have managed to find a way to store information in
a digital form stored inside electronic warehouses we call
databases, accessible over computers. Moreover, today’s
technology also lets us store information in what we call “the
cloud”, which means we don’t have to store the information
belonging to us inside our own electronic data warehouse,
instead we use the help of companies that provide data storage
services like Google Drive and Apple’s iCloud just to name a
few. This approach is considered useful since though it’s
common nowadays that a computing device provide up to 2
terabytes of storage, most people still prefer to store things on
the cloud. The motivation of storing things on the cloud is not
only driven by the need of more storage, but instead, it is also
driven by the need for the files to be accessible by more than
one person, i.e., the need for it to be shared, most commonly by
a group of people under the same community, organization, or
institution.

Databases discussed in this paper however, is discussed in a
slightly different manner than storing files in a cloud as one
does with Google Drive or iCloud. However, databases in this
manner would still revolve around storing information inside
data warehouses but the difference lie on the type of data that
gets stored.

Consider a paper company with a number of employees and
departments along with the information of the managers of

each department. A well-run company would keep all the
information regarding their employees and everything that
comes with it including, salary phone number, the department
they belong to, etc. The data stored would not merely serve as a
keepsake, data organization is crucial in a company
management, most companies refer to their databases to make
decisions regarding company policies.

Such collection of information nowadays is commonly
stored in a relational database system, managed by a Database
Management System. A relational database is a type of
database that allows access data and their relations with other
pieces of data in the same database, or to be put more simply,
one can call a database is in a relational database form if the
data tuples are stored in a table. In our paper company
example, information about each employee’s name, phone
number, salary, department, etc. could be stored in a table
named Employee and department names, office addresses, etc.
could be stored in a table named Department, both of them in a
database named CompanyData.

Aforementioned database is accessed using a Structured
Query Language (SQL), which is a programming language
with which modification and manipulation of data from a
database table is possible. With SQL, we can extract relevant
information from even more than one table through queries
using predefined keywords e.g., SELECT, JOIN, WHERE,
etc., with each keyword serving its own purpose. A database is
then managed using a Database Management System (DBMS),
with sometimes slightly different query syntaxes for differing
DBMSs. A few of the commonly used DBMSs are MySQL,
PostgreSQL, SQLite, and MariaDB.

Data is stored in this manner since it provides an effective
way to store, retrieve, and modify data. Unfortunately, data
stored using SQL databases also raises a security threat of data
breach. SQL Injection is a data breach threat in which the
attacker breaks in and extract data “hidden” by the data owner,
or in more extreme cases, the attacker may delete the data. For
example, an attacker can get information of private
information, for instance addresses of a bunch of people from
an organization through an SQL Injection.

Although the security threat has been known for around 20
years since this paper was written, it’s still the number 1
security threat according to OWASP’s top 10 web
vulnerabilities year 2017 [1]. Security measures and procedures

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

has been made by engineers all around the globe and yet the
threat is still a relevant issue to this day.

One of the ways to prevent SQL Injection attacks is to
sanitize inputs so that queries that get passed into the database
guarantees a valid input and contains no malicious subqueries.
One can almost tell right away whether a query contains a
malicious subquery given the expression, but it is a matter of
whether computers can detect said malicious subqueries given
an expression.

Computers are able to identify a pattern as a substring of a
given string by using pattern matching algorithms, be it Knuth-
Morris-Pratt or Boyer-Moore, or any other existing algorithm.
Another more common way is to use Regular Expressions.
Regular Expressions are supported by a number of
programming languages including Java and PHP just to name a
few.

In this paper, queries passed into the database will be seen
as strings and followed with a discussion about query
sanitization using Regular Expression patterns.

II. LITERATURE REVIEW

A. SQL Injection

SQL Injection attacks comes from user inputs from
websites, where the attacker can input an SQL command inside
a user input field. The attacker puts in something other than the
expected value type to be input from said fields and thus
bypasses a command to the SQL database. When the attacker
knows that a certain website is vulnerable to such SQL
Injection attack, they can virtually retrieve any information or
do any sort of update to the database, since the attacker can
already run queries. This situation is called a data breach,
where unauthorized parties manage to gain access to data that
they originally don’t have access to. In a more extreme case
however, data breach situation may not happen at all because
the attacker decides to delete all data from the database.

Consider an online shopping website and the example SQL
query below.

SELECT *

FROM Items

WHERE Name = ‘<name of the item>’;

 Let our online shopping website has a search bar feature
where customers can search for items by their names. An SQL
query to search by item name would look something like the
given query above, with the <name of the item> placeholder
would be replaced by the user input. For example, if a user
wants to search for item ‘Apple’ then the query would look like
the following:

SELECT *

FROM Items

WHERE Name = ‘Apple’;

 This will work for as long as inputs from the user is valid,
assuming none of the item names only consists of
alphanumeric characters. What gets put in the placeholder is
what we need to be extra careful with. The input could contain
strings of dangerous characters that are by themselves an
expression of SQL and thus contains SQL queries in itself. If
the user input is not sanitized and thus the website is vulnerable
to SQL injection attacks, an attacker is able to pass through
SQL statements with said dangerous characters. For example,
the following input could get passed through and delete the
entire table without the website owner knowing.

Apple’; DROP TABLE Items;--

When the above expression is to be input into the search bar,
the command that gets passed to the database is to actually
search for a product named ‘Apple’ but then drop the Items
table right away. SQL expressions are divided using
semicolons, notice how the above expression consisted parts of
2 different queries. If the above query gets passed, then we get
the following SQL expression passed to the database.

SELECT *

FROM Items

WHERE Name = ‘Apple’; DROP TABLE Items;--’;

The double dash (‘--’) after the semicolon on the second sub-
expression is an SQL comment syntax, so that the trailing
characters at the end of the expression doesn’t generate a
syntax error.

 If the above expression is successfully executed on the
database, that means the Items table is successfully deleted.

B. SQL Injection Prevention

There are a number of varying ways on how to prevent an
SQL injection attack since there are also a number of ways that
an SQL Injection attack can occur, but this paper is limited to
the discussion of SQL Injection attacks through user input
fields on the website. In this paper, SQL Injection attack
prevention will only revolve around the defense strategy
against malicious user inputs, i.e., by validating user inputs and
sanitizing the data by detecting dangerous characters. [2]

User input validation means that anything that gets passed
through to the actual SQL query is validated to guarantee that
the input is in the same type/format as what needs to be passed
as an input. For example, an online store that sells only fruit
has item names with letters of the English alphabet. An item
name-based search request from the user would have to be
validated and be decided whether the input string from the user
only consisted of alphabet characters. If the input is valid then
the input gets passed into the actual query and declined if
otherwise.

Data sanitization means that inputs are modified so that
dangerous characters are safe to be passed inside the actual
query that gets executed. Sanitization is usually done by adding
a backslash character to non-alphanumeric characters so that

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

they are not treated as a part of the SQL query, but instead they
are treated as a plain character. [3]

A number of programming languages already provide a
function to sanitize data. For example, PHP provides the
mysql_real_escape_string() function to append a backslash
character to certain characters of a string.

This paper will discuss the relevance of Regular Expression
patterns in both of the aforementioned SQL Injection
prevention techniques.

C. Regular Expression

Regular expression patterns are template patterns in which

matching strings can take the form of [4]. Several

programming languages support Regular Expression including

PHP, the programming language this paper will discuss

Regular Expression in. Regular Expression is used in exact

matching, it works by defining a Regular Expression pattern

and deciding whether there exists a substring that matches the

aforementioned regular expression pattern. The following

tables are the commonly used Regular Expression syntax,

retrieved from the Cheat Sheet section of regexpal.com [5].

TABLE 1

CHARACTER CLASSES IN REGULAR EXPRESSION

Pattern Use

. any character except newline

\w \d \s word, digit, whitespace

\W \D \S not word, digit, whitespace

[abc] any of a, b, or c

[^abc] not a, b, or c

[a-g] character between a & g

TABLE 2

ANCHORS IN REGULAR EXPRESSION

Pattern Use

^abc$ start / end of the string

\b word boundary

TABLE 3

ESCAPED CHARACTERS IN REGULAR EXPRESSION

Pattern Use

\. * \\ escaped special characters

\t \n \r tab, linefeed, carriage return

\u00A9 Unicode escaped ©

TABLE 4

GROUPS & LOOKAROUND IN REGULAR EXPRESSION

Pattern Use

(abc) capture group

\1 backreference to group #1

(?:abc) non-capturing group

(?=abc) positive lookahead

(?!abc) negative lookahead

TABLE 5

QUANTIFIERS & ALTERNATION IN REGULAR EXPRESSION

Pattern Use

a* a+ a? 0 or more, 1 or more, 0 or 1

a{5} a{2,} exactly five, two or more

a{1,3} between one & three

a+? a{2,}? match as few as possible

ab|cd match ab or cd

After the Regular Expression pattern has been constructed,

then pattern detection is possible. PHP detects the existence of

the pattern using the series of Regular Expression functions.

PHP Regular Expressions functions are the following,

retrieved from w3schools.com.

TABLE 6

REGULAR EXPRESSION FUNCTIONS

Function Use

preg_match()
Returns 1 if the pattern was found

in the string and 0 if not

preg_match_all()
Returns the number of times the

pattern was found in the string,

which may also be 0

preg_replace()
Returns a new string where

matched patterns have been

replaced with another string

https://www.w3schools.com/php/php_regex.asp

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

III. FILTERING INPUTS USING REGULAR EXPRESSION

SQL Injection prevention techniques discussed in this paper
is limited to only discuss user input validation and data
sanitization, whereas regular expression patterns will be
generated to validate said inputs. Input string filtering methods
will be classified into two different categories, which are
Positive Filter and Negative Filters. Both of which are
adaptations of the User input validation and data sanitization
methods respectively.

A. Positive Filter

Positive filtering means that a Regular Expression is
constructed so that inputs are restricted to only be of some
specific string that may or may not represent an actual object.

Consider the formerly introduced online shopping website
example that only sells fruit with the assumption that for every
fruit sold on the online shop, their name only contains
characters that are part of the English alphabet, i.e., letters
through A-Z, insensitive towards capitalization. Thus, a regular
expression built should only allow string of alphabet
characters. The regular expression for the fruit online shop is as
follows:

fruitName = "/^([A-Z])+(\ ([A-Z])+)*$/i"

 The above expression means that a fruit name should
contain at least one alphabet character and also a fruit name can
be consisted of more than one word, separated by no more than
one space character. The above expression forces that the
beginning and the end of the input should be part of the input
string, i.e., the input should only be the word being searched.

 Although a positive filter for checking fruit names, i.e.,
strings only containing letters of the alphabet with no more
than one consecutive space character as a delimiter has been
successfully constructed, positive filtering is not limited to such
expressions. Countless of possible regular expression patterns
can be constructed to check various naming rules.

B. Negative Filter

 Negative filtering means that a Regular Expression is
constructed so that it accepts everything except predefined
“forbidden” characters.

 On the previous section, the online fruit store example can
only sell fruit whose name characters exist in the English
alphabet, with no more than one consecutive space character.
In the case of there exists a fruit that has a name containing a
number for instance, or in the case where users can search for
fruit names in different languages which requires special
Unicode characters, a positive filter regular expression would
involve enumerating every special character there is to know
when it comes to naming fruit. A negative filter however, only
checks for what should not be found in the user input, and thus
the need to enumerate every character is exempted.

 SQL Injection attacks that occur through input boxes on
websites happen when the input gets passed to the placeholder
in the actual SQL query that is going to be executed when the

user presses the execute command button. It is needed to be
identified which characters are forbidden so that a negative
filter can guarantee that strings containing said characters never
gets executed into the SQL query. The regular expression for
negative filter with the set of forbidden characters being a
semicolon, an apostrophe, and a double quote is as follows:

illegalChar = "/^[^;\'\"\(\)]+$/i"

 The above expression will yield a match if there are no
forbidden characters present in the string being checked. For
single character checking, the above expression is already
flexible, meaning that any other new character that one wishes
to be made forbidden can be appended to the list of forbidden
characters in between the square brackets.

 Negative filter is however, not limited to only checking
illegal characters. Oftentimes, SQL injection attacks via user
input contain SQL keywords such as “DROP” or “UPDATE”.
Negative filter method for SQL keywords can be used to add
another layer of security.

illegalWord =
"^((?!(drop|table|update)).)*$"

The above expression filters out the words “drop”, “table”, and
“update”, therefore any string input containing words
mentioned will not be validated by the Regular Expression
pattern. Filtering words is also flexible, more words can be
appended to the string between the parentheses after the
exclamation point, along with an or symbol if one wishes to
add more words to be filtered out.

IV. IMPLEMENTATION AND ANALYSIS

 From the fruitName, illegalChar, and illegalWord regular
expression patters, will be conducted an experiment with a
number of testcases to verify its ability to filter out string
inputs. Note that successes in the examples given do not
represent success in other cases not mentioned in this paper due
to the variability of the usage of regular expression. However,
this experiment will show that the constructed regular
expression pattern is successful in verifying the given cases.
(will be explained in the corresponding sections)

A. Positive Filter Test

The fruitName pattern example represents a case where the

input is only allowed if every character on the string is a

member of the English alphabet, followed by strings of the

same kind separated with no more than one whitespace

character. This paper however, is limited to only giving the

solution for cases of this kind.

Experiment is conducted on phpliveregex.com on a PHP

environment, result showing only ‘array()’ for a string testcase

means the string is not found given the pattern. The following

are the experiment results.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

Fig. 1.1. phpliveregex results for fruitPattern example.

TABLE 7

POSITIVE FILTER TEST RESULT

String Result Verdict

Mango Found Pass

Ripe banana Found Pass

Apple’; Not found Pass

The results above shows that the pattern accepts only

testcase strings that are valid for the pattern, i.e., testcases that

does not contain any non-alphabet character.

B. Negative Filter Test

To show the already given examples, Negative Filter test

will be divided into two sections, the character example and

the keyword example.

1. Negative Character Filter

 Even though the given example of negative character
almost certainly has not covered every “dangerous” there is to
filter, the given regular expression is deemed open enough to
newly defined forbidden characters, meaning that if there is a
case where a new character is to be defined as a forbidden
character, the addition to the list need not to make a new
regular expression altogether, instead, one is expected to
merely add said new character to the already defined set of
forbidden character.

Experiment is conducted on phpliveregex.com on a PHP

environment, result showing only ‘array()’ for a string testcase

means the string is not found given the pattern. The following

are the experiment results.

Fig. 1.2. phpliveregex results for illegalChar example.

TABLE 8

NEGATIVE CHARACTER FILTER TEST RESULT

String Result Verdict

2_Mangoes Found Pass

Ripe-banana Found Pass

Apple’; Not found Pass

The results above shows that the pattern accepts only testcase

strings that are valid for the pattern, i.e., any string for as long

as it does not contain forbidden characters. Said forbidden

characters being a semicolon, an apostrophe, and a double

quote.

2. Negative Keyword Filter

 Similar to the negative character filter example, the given
example for negative keyword filter has almost certainly not
covered every risky SQL keyword there is to filter. However, if
it is desired for a new keyword to be defined as a forbidden
keyword, an addition to the already defined set of illegal word
in the regular expression would be sufficient.

Experiment is conducted on phpliveregex.com on a PHP

environment, result showing only ‘array()’ for a string testcase

means the string is not found given the pattern. The following

are the experiment results.

Fig. 1.2. phpliveregex results for illegalWord example.

TABLE 9

NEGATIVE KEYWORD FILTER TEST RESULT

String Result Verdict

Apples" Found Pass

Ripe banana; Found Pass

Mangoes'; DROP TABLE fruit;-- Not found Pass

The results above shows that the pattern accepts only testcase
strings that are valid for the pattern, i.e., strings that do not
contain any forbidden keyword, i.e., “drop”, “table”, and
“update” (case insensitive). Also note that in practice, Negative
word filtering may still yield an error since it does not filter out
forbidden characters that may result in a syntax error.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2020/2021

After the implementation of either the positive and

negative filtering, results from the regular expression checker

may then be decided if whether any illegal input should be

automatically modified so it becomes safe (delete characters,

adding escape characters, etc.) or reject the input altogether.

C. Analysis

Based on the results of tests on the three examples given,
positive and negative filters have their own advantages and
drawbacks.

Positive filters are generally more secure than negative
filters since it only allows strings of the same kind as a certain
category’s name, but positive filtering limits the category name
and thus possible future modification to the name may require
an update to the regular expression.

Negative character filter is less prone to error since it may
be used to filter out symbols that may be part of the SQL
syntax. Unlike the negative character filter, the negative
keyword filter would still yield SQL syntax errors and it is
possible to coincidentally filter out names that are actually
valid names, but it may effectively block any potential
malicious SQL keyword.

TABLE 9

ADVANTAGE AND DRAWBACK ANALYSIS

Filter Advantage Drawback

Positive • Stricter, and thus

generally more

secure

• Limited to only a

specific type of string

• Still prone to syntax

errors

Negative

character
• Less prone to error -

Negative

keyword
• Blocks SQL

keywords

altogether

• Still prone to syntax

errors

• Limit names that may

coincidentally the

same as SQL

keywords.

V. CONCLUSION

Regular expression can be used as an alternative to

filtering and sanitization of database inputs. positive filtering

is a regular expression construction which only accepts strings

of the actual string type in the database, and negative filtering

is a regular expression construction which accepts everything

unless it contains anything from a given set of illegal

characters/strings. Positive filtering is stricter than negative

filtering, thus it is generally more secure than negative filters

but it is relatively close ended, whereas negative filtering is

more open to change.

VIDEO LINK ON YOUTUBE

https://youtu.be/D0tsiJBKl7w

ACKNOWLEDGMENT

First and foremost, I would like to say
Alhamdulillahirabbil’alamin I am able to finish this paper in
the holy month of Ramadhan, and for everything I have been
given in life and the gift of life itself. To both of my parents,
although no words would be enough to express how much I
thank them, who are there since the day 0 of my life, and
through the ups and downs of it all. To all of my professors,
especially Prof. Dwi Hendratmo Widyantoro, Ph.D., who has
been being my professor in the study of Algorithmic Strategies
this semester, may all the lessons learnt, course-related or not,
be useful for years to come. To all computer scientists and
engineers throughout the ages, whose contribution has fueled
technological progress and innovation to this day. To all my
friends and loved ones, whose acts of kindness and support, no
matter how small, shall not go unnoticed.

REFERENCES

[1] "OWASP Top Ten Web Application Security Risks |
OWASP", Owasp.org, 2021. [Online]. Available:
https://owasp.org/www-project-top-ten/. [Accessed: 11- May- 2021].

[2] A. Weiss, "Prevent Web Attacks Using Input
Sanitization", eSecurityPlanet, 2012. [Online]. Available:
https://www.esecurityplanet.com/endpoint/prevent-web-attacks-using-
input-sanitization/. [Accessed: 11- May- 2021].

[3] A. Weiss, P. Rubens and S. Ingalls, "SQL Injection Prevention | How to
Prevent an SQL Attack", eSecurityPlanet, 2021. [Online]. Available:
https://www.esecurityplanet.com/threats/how-to-prevent-sql-injection-
attacks/. [Accessed: 11- May- 2021].

[4] S. Kulkarni, "An Introduction To Regular Expressions |
DigitalOcean", DigitalOcean, 2014. [Online]. Available:
https://www.digitalocean.com/community/tutorials/an-introduction-to-
regular-expressions. [Accessed: 11- May- 2021].

[5] "Regex Tester - Javascript, PCRE, PHP", Regexpal.com, 2021. [Online].
Available: https://www.regexpal.com/. [Accessed: 11- May- 2021].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Surabaya, 11 Mei 2021

Ryandito Diandaru 13519157

	I. Introduction
	II. Literature Review
	A. SQL Injection
	B. SQL Injection Prevention
	C. Regular Expression
	Table 1
	Character Classes in Regular Expression
	Table 2
	Anchors in Regular Expression
	Table 3
	Escaped characters in Regular Expression
	Table 4
	Groups & Lookaround in Regular Expression
	Table 5
	Quantifiers & Alternation in Regular Expression
	Table 6
	Regular Expression Functions

	III. Filtering Inputs Using Regular Expression
	A. Positive Filter
	B. Negative Filter

	IV. Implementation and Analysis
	A. Positive Filter Test
	Table 7
	Positive Filter Test Result

	B. Negative Filter Test
	Table 8
	Negative Character Filter Test Result
	Table 9
	Negative Keyword Filter Test Result

	C. Analysis
	Table 9
	Advantage and Drawback Analysis

	V. Conclusion
	Video Link on YouTube
	Acknowledgment
	References

